
19 More on Eigenvalue Problems

Below we touch on a sometimes useful monotonicity theorem for comparing
sets of eigenvalues, then move on to a brief discussion of some eigenvalue
problem topics in higher dimensions.

19.1 A Monotonicity Theorem

Consider the Sturm-Liouville EVP
d
dx

(
p(x)dφ

dx

)
− q(x)φ+ λσ(x)φ = 0 in a < x < b

φ(a) = φ(b) = 0
(1)

That is, p, q, σ satisfy the conditions in the Sturm-Liouville theorem of the
last section.

Theorem: Reducing the interval (a, b), or increasing p, or increasing q,
or decreasing σ, increases all eigenvalues of problem (1).

This means, for example, if (1) has real, ordered, positive eigenvalues
{λn}n≥1 and we have another problem that is identical to (1) except we
change p(x) to p̃(x) such that p̃(x) ≥ p(x) on (a, b), then the new problem
has eigenvalues {λ̃n}n≥1, and by the statement of this theorem, λ̃n ≥ λn for
each n = 1, 2, . . .. A way of remembering this theorem is to consider the
problem with all constant coefficients so we have an explicit expression for
the eigenvalues. Consider (1) with positive, constant coefficients. Then

p
d2φ

dx2
− qφ+ λσφ = 0

which can be written as

d2φ

dx2
+
λσ − q
p

φ =
d2φ

dx2
+ µφ = 0 .

Hence, φ(x) = sin(
√
µ(x−a)) satisfies the equation and the left-hand bound-

ary condition. With sin(
√
µ(b−a)) = 0, we have

√
µ(b−a) = nπ, n = 1, 2, . . ..

Therefore, µ = µn =
(
nπ
b−a

)2
, or

λn =
q

σ
+
p

σ

(
nπ

b− a

)2

n = 1, 2, . . . . (2)
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Now we can see that λn can be increased by increasing p or q, or decreasing
σ or b− a. The above monotonicity theorem just states this also holds when
one or more of the coefficients are x-dependent.

Example: Consider the problem
d2φ
dx2
− q(x)φ+ λφ = 0

φ(0) = φ(1) = 0

where q(x) is a continuous function on [0, 1]. What can we say about the
eigenvalues (other than what is mentioned in the Sturm-Liouville theory)?

Well, from (2), if q(x) is a constant q̄ ≥ 0, then λn = q̄ + (nπ)2 (since
σ = p ≡ 1, b − a = 1). In general q = q(x) is non-constant, so we can
not obtain an explicit formula for λn = λn(q), n = 1, 2, . . .. but q being
continuous on the closed interval means it has a maximum value, qM , and a
minimum value, qm, on the interval [0, 1], so qm ≤ q(x) ≤ qM . Invoking the
monotonicity theorem (twice), we have

qm + n2π2 ≤ λn(q) ≤ qM + n2π2 for each n.

In particular, limn→∞
λn(q)
n2π2 = 1. That is, λn(q), no matter what q is, looks

more like n2π2 as n gets larger. (Mathematicians like to write this statement
as λn(q) ∼ n2π2 as n→∞.)

Remark: This example is a pretty prominent EVP, so it has been inves-
tigated enough that we have more information about its eigenvalues. As
long as q(x) is square integrable (i.e.

∫ 1

0
(q(x))2 dx < ∞), it need not be

continuous everywhere),

λn(q) = n2π2 +

∫ 1

0

q(y) dy −
∫ 1

0

q(y) cos(2nπy) dy + εn

where the error εn satisfies |εn| ≤ C/n, for some constant C independent of
n, or q. The last integral goes to zero by the Riemann-Lebesque lemma, so
λn(q) = n2π2 + {average of q on [0, 1]}+ the error,
where the error goes to zero like 1/n as n→∞. This is a nice correction to
the approximation λn(q) ∼ n2π2.
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Example: From our previously introduced variable-density vibrating string
problem, on page 2 of the previous section, consider

d2φ
dx2

+ λ(1 + x)−2φ = 0 , 0 < x < l

φ(0) = φ(l) = 0

Note that on (0, l), (1 + l)−2 ≤ σ(x) = (1 + x)−2 ≤ 1. If we consider instead
the problem 

d2φ
dx2

+ µ(1 + l)−2φ = 0 , 0 < x < l

φ(0) = φ(l) = 0

we find the eigenvalues to be µ = µn =
(
nπ(1+l)

l

)2

, n = 1, 2, . . .. By the

monotonicity theorem we have replaced σ(x) by something smaller, so µn ≥
λn, n ≥ 1. Similarly, if we replace σ(x) with 1,

d2φ
dx2

+ µφ = 0 0 < x < l

φ(0) = φ(l) = 0

then µn =
(
nπ
l

)2
. Therefore, by the monotonicity theorem, we have the

eigenvalue bounds(nπ
l

)2

≤ λn ≤
(nπ
l

)2

(1 + l)2 n = 1, 2, . . .

Exercise: Find upper and lower bounds on the nth eigenvalue λn for the EVP
d
dx

(
(1 + x2)dφ

dx

)
− xφ+ λ(1 + x2)φ = 0 0 < x < 1

φ(0) = 0 = φ(1)

Before leaving the discussion of EVPs, let us consider some analogous
results to previously mentioned properties that can arise in a multi-space
dimensional setting. We will leave a fuller discussion of solving such equations
for later.
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19.2 Some Remarks on Eigenvalue Problems in Higher
Dimensions

For general consideration below, let Ω be a bounded, simply-connected region
in RN (N ≥ 2), with smooth boundary ∂Ω; that is, the unit outward-pointing
normal vector ν = ν(x) is defined everywhere on ∂Ω.

Example: If we have the diffusion equation

ut = D∇2u in Ω× (0,∞)

u(x, t) = 0 on ∂Ω

Then by separation of variables, u = T (t)φ(x), φ must satisfy the (PDE)
EVP 

∇2φ+ λφ = 0 in Ω

φ = 0 on ∂Ω
(3)

This is a special case of the multi-dimensional Sturm-Liouville problem, so
we expect much of what we mentioned for the one-dimensional case should
apply here.

Divergence Theorem: Given the conditions on Ω above, then for any
smooth vector function w = w(x),∫

Ω

div w dx =

∫
∂Ω

w · ν ds . (4)

Comment on notation: In these Notes, vectors will generally be in bold Ro-
man letters except if the vectors are of unit length, like the normal vector, ν,
above, in which case we will use unbolded Greek letters. The context should
make vector versus scalar notation apparent.

If w = u∇v = u grad v, then div w = div(u∇v) = u∇2v + ∇u · ∇v (a
vector form of the product rule). Then, from the divergence theorem,∫

Ω

u∇2vdx +

∫
Ω

∇u · ∇vdx =

∫
∂Ω

u∇v · ν ds . (5)
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This is a kind of multi-dimensional version of the integration-by-parts for-
mula, and (5) is called Green’s first identity. Often times ν ·∇v is written
in directional derivative notation, that is as ∂v/∂ν; then (5) can be written
as ∫

Ω

u∇2v dx =

∫
∂Ω

u
∂v

∂ν
ds−

∫
Ω

∇u · ∇v dx . (6)

If u = v = φ, where φ is an eigenfunction associated with λ in the EVP (3),
Then (6) becomes ∫

Ω

φ∇2φ dx = −
∫

Ω

|∇φ|2 dx . (7)

Multiply the equation in (3) by φ and integrate, using (7), we obtain

−
∫

Ω

|∇φ|2 dx + λ

∫
Ω

φ2 dx = 0 ,

or,

λ =

∫
Ω
|∇φ|2 dx∫
Ω
φ2 dx

=: R[φ] > 0 (8)

for the eigenfunction φ. The quotient here is the (multi-dimensional) Rayleigh
quotient associated with problem (3).

Given the domain above, and problem (3), we have the following mini-
mization result:

Theorem 1: Given A, the set of functions defined on the closure of Ω,
Ω̄, continuous on Ω̄, piecewise smooth in Ω, not identically zero in Ω, but
zero on ∂Ω, then for any ψ ∈ A, the smallest eigenvalue, λ1, of (3), satisfies
λ1 ≤ R[ψ], and R[ψ] = λ1 if, and only if ψ is an eigenfunction associated
with λ1.

For a piece of the monotonicity theorem generalized to multi-dimensions,
we have

Theorem 2: Given the domain Ω, and subdomain Ω̃ in Ω, Ω̃ not equal
to Ω, let λ1(Ω) (respectively, λ1(Ω̃)) be the smallest eigenvalue of (3) defined
on domain Ω (respectively, defined on subdomain Ω̃). Then λ1(Ω) < λ1(Ω̃).
Moreover, λn(Ω) < λn(Ω̃) for all n = 1, 2, . . ..
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Example: Consider Ω being the square centered at the origin and having side
of length 2; that is, Ω = {(x, y) : |x| < 1, |y| < 1}. Let Ω̃ be the inscribed disk
of unit radius. Then λ1(Ω) = π2/2 ≈ 4.9348 and λ1(Ω̃) ≈ 5.7831 > λ1(Ω).
(The first eigenvalue of the disk problem comes from the smallest root of the
Bessel function of first kind of zeroth order, namely, J0(

√
λ01) = 0. Again,

see Appendix F for a discussion of Bessel functions.)

Question: For the heat problem on a plate of unit thickness, among all
shapes of equal area, what shape of plate will cool the slowest?

Hint: Of all the shapes of equal area, the disk has the smallest circumference.

Faber-Kahn inequality lemma; For all domains Ω ⊂ R2 of equal area,
the disk has the smallest first eigenvalue.

Thus, recall that u(x, t) =
∑

n ane
−λnDtφn(x), and since 0 < λ1 <

λ2 < . . . (D = constant diffusivity), the slowest decaying term (the rate-
determining term) is the first term, i.e. the one with the smallest eigenvalue.
So other domains with larger λ1 will have terms decaying faster, that is,
cooling faster.

Comment on continuity: It is reasonable to expect that if we have two do-
mains Ω1 and Ω2 with Ω1 “sufficiently close to” Ω2, then λ1(Ω1) should be a
close approximation to λ1(Ω2). The trick is what do we mean by Ω1 being
close to Ω2. This is actually a nontrivial issue not easily resolved. It turns
out there needs to be a really smooth function near the identity function
between Ω1 and Ω2 for one to make rigorous sense of this, so the conditions
needed to have such an approximation are really special.

19.3 Can one hear the shape of a drum?

This is the title of a famous paper by Mark Kac1. The problem is the
following: imagine a domain Ω (interior of a smooth closed curve in the
plane that represents the (arbitrary) shape of a drum head), and suppose we
knew all the frequencies of sound exactly that the drumhead can emit. That

1American Mathematical Monthly, vol. 73, no. 4, 1966, pp 1-23.
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is, we know the precise values of all the eigenvalues λn(Ω), n = 1, 2, 3, . . ..
Can one infer the shape of Ω from this information?

This is an inverse problem; instead of being given the precise descrip-
tion of Ω, and problem (3), and asked to find the eigenvalues, we are given the
eigenvalues and asked to find Ω. This is a really hard problem. When Kac
proposed the question in 1966 he gave a few preliminary results but could
not answer the question. The question actually goes back to 1910, where it
was mentioned in a slightly different form by Dutch physicist Lorentz. One
of the great mathematicians of the twentieth century, Hermann Weyl, some
years later (around 1921) proved a limited result that can be expressed as

N(λ) ∼ |Ω|
2π
λ as λ→∞, where N(λ) = number of eigenvalues < λ, and |Ω| =

area of Ω. This says as λ gets large, since we know the distribution of the
eigenvalues, we also know the function N(λ), so that we can “hear the area
of the drumhead”. Not overly satisfying result considering the original goal.
Kac’s question was finally answered negatively in 1993 for the case of polygo-
nal domains (boundaries have “corners”, that is, origami type domains) when
it was proved there were two such unequal domains with exactly the same
eigenvalues. For domains with smooth boundaries, the problem remains open
to this day.

Inverse problems come up a lot in science, and are important in indus-
try. Often they are phrased as parameter-determining problems. Sometimes
they are source problems. For example, from an advection-diffusion equation
standpoint, suppose we have a flowing river where he have knowledge of the
current. We have placed sensors every so often along the rive to monitor for
a certain toxin. All of a sudden we pick up a sensor reading between sensors.
From the data can you locate the point source of the toxin release between
the two sensors?

19.4 Comments on examples from the previous section

Completion of Example 1: From (2) and (5) in the last section we have

f(x) = (1 + x)−1/2

∞∑
n=1

Bn sin(
nπ

ln(2)
ln(1 + x)) . (9)

Since σ(x) ≡ 1, multiply both sides of (9) by an arbitrary eigenfunction

φm(x) = 1√
1+x

sin(mπ ln(1+x)
ln 2

) and integrate:
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∫ 1

0

f(x)(1 + x)−1/2 sin(
mπ ln(1 + x)

ln 2
)dx =

∞∑
n=1

Bn

∫ 1

0

(1 + x)−1 sin(
nπ ln(1 + x)

ln 2
) sin(

mπ ln(1 + x)

ln 2
)dx =

ln 2
∞∑
n=1

Bn

∫ 1

0

sin(nπy) sin(mπy)dy

=
ln 2

2
Bm ,

where we have defined y = ln(1 + x)/ ln(2) (so ln(2) dy = (1 + x)−1dx), and
used the orthogonality of {sin(nπy)}n≥1 on [0, 1]. Hence,

Bn =
2

ln 2

∫ 1

0

f(x)√
1 + x

sin(
nπ ln(1 + x)

ln 2
) dx ,

with u(x, t) given by (5):

u(x, t) = (1 + x)−1/2e−D0t/4

∞∑
n=1

Bne
−D0n2π2t/(ln 2)2 sin(

nπ ln(1 + x)

ln 2
) .

Comment: The bottom line here is that we have done the same strategy on
this variable coefficient problem as we did with previous examples; trans-
form the original problem, if necessary, to one with homogeneous boundary
conditions, separate variables to obtain the problem’s EVP. Solve for the
eigenvalues - eigenfunction pairs, if possible, then solve for the t-dependent
problem. Whether we are talking about diffusion or wave equations, the only
unused information is the initial condition(s). So sum the contributions, em-
ploying the superposition principle and apply the initial conditions on the
resulting eigenfunction series for the solution in order to obtain expressions
for the Fourier coefficients. Integrate the expressions, if possible.
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Comment on exercise, page 2 of the last section: You should obtain eigen-
values λn = 1/4 + (nπ/ ln(1 + l))2, and associated eigenfunctions φn(x) =√

1 + x sin(nπ ln(1+x)
ln(1+l)

) to the eigenvalue problem

(1 + x)2d
2φ

dx2
+ λφ = 0 , φ(0) = φ(l) = 0 (10)

(which is a Cauchy-Euler equation). Hence, the solution u(x, t) for the dis-
placement of the string from equilibrium (which you were not asked to pro-
vide) is

u(x, t) =
√

1 + x
∞∑
n=1

{an cos(c
√
λnt) + bn sin(c

√
λnt)} sin[

nπ ln(1 + x)

ln(1 + l)
] .

Thus,

ut(x, t) =
√

1 + x
∞∑
n=1

c
√
λn{−an sin(c

√
λnt)+bn cos(c

√
λnt)} sin[

nπ ln(1 + x)

ln(1 + l)
] ,

so

ut(x, 0) = 0 =
√

1 + x
∞∑
n=1

c
√
λn bn sin[

nπ ln(1 + x)

ln(1 + l)
] ,

which implies bn = 0 for all n ≥ 1. Also,

u(x, 0) = f(x) =
√

1 + x
∞∑
n=1

an sin[
nπ ln(1 + x)

ln(1 + l)
] . (11)

But note that the EVP (10) is not in Sturm-Liouville form! That is, we
should write

d2φ

dx2
+ λ(1 + x)−2φ = 0 (so σ(x) = (1 + x)−2, p ≡ 1, q ≡ 0) ,

and compute the coefficients an in (11) by multiplying both sides by an
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arbitrary φm(x)σ(x) = (1 + x)−3/2 sin[mπ ln(1+x)
ln(1+l)

], and integrate:∫ l

0

(1 + x)−3/2f(x) sin[
mπ ln(1 + x)

ln(1 + l)
]dx

=
∞∑
n=1

an

∫ l

0

(1 + x)−1 sin[
nπ ln(1 + x)

ln(1 + l)
] sin[

mπ ln(1 + x)

ln(1 + l)
]dx

= ln(1 + l)
∞∑
n=1

an

∫ l

0

sin(nπy) sin(mπy)dy where y = ln(1+x)
ln(1+l)

=
ln(1 + l)

2
am by orthogonality .

To summarize, the solution to this example is

u(x, t) =
√

1 + x
∞∑
n=1

an cos(c
√
λnt) sin[

nπ ln(1 + x)

ln(1 + l)
]

where

λn =
1

4
+

n2π2

(ln(1 + l))2

and

an =
2

ln(1 + l)

∫ l

0

(1 + x)−3/2f(x) sin[
nπ ln(1 + x)

ln(1 + l)
]dx .
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